ORB

Object Request Broker

ORB

ORB

ORB
— provide communication and management services
— enables objects to communicate over networks
 request and receive responses
— based on RPC and message queue

— Two category
« OMG: CORBA
* Microsoft: DCOM (Distributed Component Object Model)

Services of ORB

ORB

Basic services
— hide network details from the object
 providing network transparency

— handle object request and the synchronization of the request and delivery
of any response

— handle the exception to the requesting object

Extra services
— provide administration and development services
* to create and terminate objects
* to debug and test an application
 aform of directory service
— provide extra run-time services
» multi-threading, security, load balancing, and transaction recovery

What are ORBs? -1

ORB

IS middleware

enables objects to communicate over networks with different
communications protocols

enables objects to reside on different hardware platforms
enable inter-communication between objects
enable objects to be moved about the network transparently

provide mechanism by which objects make request and receive
response

responsible for managing and locating the objects

support both inter-object communication and communication
between objects and external services

— these should be transparent to the application programmer

What are ORBs? -2

ORB

objects interact by exchanging request and reply, either locally
or over a network (About objects : application, process, object
class, instance of class)

act as the intermediary between objects

locating the object on the network and communicating the
request to object

provide basic communication services

— hiding network details from the object and providing network
transparency

handle object request
— handle the synchronization of the request
— delivery of any response or exception to the requesting object

What are ORBs? -3

ORB

provide extra services (run-time services)
— provide administrative and development services

* administrator to create and terminate objects, developer to
debug and test an application

services provided by ORBs differ between product implementation

— multi-threading, security, a form of directory service, support for
features such as load balancing and transaction recovery,
location brokering

Is base of a communication layer provided by a low-level
communication protocol, remote procedure calls or message-
oriented middleware

Influence the style of communication supported
— synchronous or asynchronous messaging

Distributed environment

ORB

Remote Method Invocation

Server

Clients

Object Request Broker

Basic Concept of ORB (1)

ORB

-
-

Well Defined
Interface

Identification
Encapsulation

Server

Basic Concept of ORB (2)

ORB

Parameters

Results

Exceptions

——OREWaY FeqUESE —— No response

| TWOWaY FeqUESt —— Expect a result

- synchronous mode
- deferred synchronous mode

10

How ORBSs work? -1

ORB

based on the idea that applications are written around collections of objects
that isolate the requester from provider (of the service) by a well defined
Interface

Interface to an object is fundamental to the way ORBs work
— describes all the possible operations that a client may request of an object

— Is independent of where the object is located, what programming
language it is defined, how its services are implemented

each operation specified within the interface has a signature that describes the
legitimate values of request parameters and returned results

— parameters required, results, exceptions, additional contextual
Information

11

How ORBSs work? -2

ORB

» Based on “classical object model”

— Where the client sends a message to the object and the object then
Interprets the message to decide what service to perform

— at run-time, client issue messaging in the form of request (expect a result,
require no response)

— One-way request

 has no need to synchronise with the target object’s execution
— synchronous mode

« client pause to wait for completion of the request
— deferred synchronous mode

« client does not wait for completion of the request, but does intend to
accept results later

12

Distributed environment

QLR Ol WA & BE

Client Cbject
(Caller) (Calleg)

Client
(Caller)

Object
(Calleg)

CORBA

ORB

13

ORBs?

e Static ORB
— asimilar way to RPC
— an interface is decided at compile time
— synchronous requesting
 Dynamic ORB
— an interface is decided at run-time
— deferred synchronous requesting

* ORB functions
— finding the code and data that implement the object
* Implementation repository
— communicating the data making up the request
— Invoking the object that is to receive the request
» dynamic service activation
— receiving from failure or error

ORB

14

Static ORBs

ORB

the interface and function calls have been defined, the objects are compiled
— similar way to RPC (restriction : request must be synchronous)
— creating new threads at the client end
— (in principle) object has to issue a message and wait for the reply

— application which use static invocation must have all their interface
definitions available at compile time

— once executables are produced, the application structure is fixed
less flexible to network changes
— 1f objects are changed, the source code has to be altered and recompiled
faster message passing
simpler to program
Improve code quality by allowing compile-time type checking

15

Dynamic ORBs -1

ORB

do not require the programmer to specify the interface to be used in the
compiled code

Instead, code is written by the programmer that uses a separate specification
of the interface, not held in the program

determine dynamically what interface are available (reference to some file :
Interface repository - in CORBA)

— provide a list of the interface available
— arguments, parameters
— enabling decisions to be made as late as possible

manipulate the lists and puts them into standard form before routing them to
the appropriate object implementation

16

Dynamic ORBSs -2

ORB

support deferred synchronous invocation

— control returns to the client after the request has been made, and the client
Is free to continue executing code

— after specific period, client may poll the ORB to retrieve the result
— support multiple request to many objects
more flexible to change
— no need to recompile when change occurs to the interfaces
— object has access to any object on the system and to all the interface

require more code and effort to program and are likely to be slower than
the approach used with a static ORB

— errors being made in the code is increased as type checking has to be
done at run time

17

ORB functions -1

When client issues a request, ORB is responsible for

— finding the code and data that implement the object
— communicating the data making up the request

— Invoking the object that is to receive the request

— recovering from failure or error

ORB

18

ORB functions -2

ORB

» Locating the object
— may use an implementation repository
— contains information about object
* |ocation
 description of the data structure used to hold state information
 operation and interface used by the object
« (interface repository : detailed info about the interfaces)

— approach used to create information about the objects depends on the
standard to which the ORB conforms

— most implementation-repository information is created at object-
Installation time, by the ORB administration s/w, by the object itself, by
the administrator

19

ORB functions -3

Communicating the data
— assumed function of ORBs

 conversion of the data required when communication is between
heterogeneous machines

majority of ORBs provide this service, some do not

programmer will have to the conversion required if the
communication services are weak

transport protocol is hidden from the programmer
ORB handles network protocols (ORB may support TCP/IP)

ORB

20

ORB functions -4 -

* Invoking the object
— provide mechanism for object activation which allows them to be invoked
only when they are required
— when object is requested, ORB will create an instance of that object
which is then used to process the request
 subroutine is held in a library, and a copy of it is created in core ready
for processing only when it is requested

— ORB?’s responsibility
* find the object
* create object instances when they are needed
* remove object instances when they are no longer

21

ORB functions -5

ORB

* Invoking the object (cont.)
— dynamic service activation

« when object invoked, it clones itself and the instance is loaded into
the machine

 once the object has completed its task, it may then be deactivated by
the same service

— the object interprets the message by selecting a method based on the
operation requested (method is the code used to perform the service)

 Input parameters and data passed in the message are passed to the
method so that it can use them to execute the request

* request then results in the service being performed by the object on
behalf of the client

 data may be created or updated, results produced, and the internal
state of the object changed.

22

ORB functions -6

Coping with failure

— ORBs do not necessary provide services to manage transaction failure
* (these may have to be handled by application program)

ORB

23

1. Object B 7} of{Cof|
U=X| Zefstct.

opjec

Reques

SrokKer

ORB

3. M7} 7| S5tT
RUX| ero

MHE 7tSA|ZICH

24

Ways of implementing ORBs

ORB

generally defined by standards and so depend on the particular product
Implementation

— location of the ORB s/w
— language it is written in
— protocol used for communicating

ORB can reside on both the client and server

— with location services in ORB to establish communication between client
and server

all clients communicate with one server that contains the routing mechanism
for the ORB

25

Additional Services of ORBs

Event service
Multi-threading
Resilience and Fault-tolerance services
Communication-optimization services
— dynamic routing, load balancing, performance monitoring, and
— dynamic loading
Transaction services
Location brokering and object-broker services
Other services
— memory management
— versioning and change management
— Security services, timing services, error handling
Etc
— Administrative services and Development Services

ORB

26

Additional services of ORBs -1

ORB

e Eventservice

« extend the capability of ORBs to support various communication approaches

— one-way, synchronous, deferred synchronous, asynchronous, broadcast,
multicast

— basic ORB implementation require

* the client issuing the request and the object satisfying the request have
to be up and running in order for the request to be successful

« if a request fails because the server object is unavailable, the ORB
sends the client an exception which it must then handle

27

Additional services of ORBs -2

ORB

» Event service (cont.)

— In order to obtain this de-coupling of consumer and supplier, most ORBs
use intermidiate objects that act like a sort of post-box for storing events
received from multiple supplier and sending off events to multiple
consumers asynchronously

* in CORBA, terms these objects event channels

— event-channel object’s responsibility to determine how events are
propagated
 broadcast, multicast
— ORB terminology use event filtering instead multicast

o all event filtering is achieved via event channels which can select
events based on criteria in the message or by the message or by
criteria defined in the channel itself

28

Additional services of ORBs -3

ORB

« Example use of event-channel object

Event 2 Pull
> Object
: > 3
i Event 1
1
|
Event 1 Push vent-
Event 1 Object
ORB cha_nnel ORB S
Event 2 objea
I
Object
2 :
| Object

Event 2 Pull S

29

Additional services of ORBs -4

ORB

e Multi-threading

— ORB can create new client threads each time when they bind with an
object’s implementation

— ORB support for thread management and scheduling

— whenever a shared resource is accessed, locks are applied by the ORB
and released upon completion of the thread

— ORB can also be multi-threaded
 with various degrees of multi-threading support
 the number of threads is limited by the virtual memory available

30

Additional services of ORBs -5

ORB

* Resilience and fault-tolerance services

— provide facility that automatically cope with network failure by
» for example

 re-connecting a client to a copy of the object the ORB creates and
clones

e client has no need to know of the failure

— object replication
* ORB use fully replicated ORB cores to provide continuous back-up
» ORB prevent loss of service due to network or host failure

31

Additional services of ORBs -6

ORB

 Communication-optimisation service

optimise the communication and number of calls made by avoiding
unnecessary calls

 for example

o if the client and server object reside on the same machine, the ORB
and network may be by-passed altogether

dynamic routing - of messages to objects

load balancing - with the facility to query the loads on hosts to determine
the appropriate host to use

altering - a performance monitor bridge to systems management tools

dynamic loading - the object is loaded at run-time from anywhere on the
network to an appropriate host when it is needed and where it is best
placed

32

Additional services of ORBs -7

Transaction services

— include the ability to log transaction

 |f the network fails to recover from the error, roll back all the
resources involved to their prior state

— record the state of participating objects in a cache or log
 with the ability to roll back to prior state

ORB

33

Additional services of ORBs -8

ORB

» Location brokering and object-broker services

— enable an application to locate objects access multiple ORBs

— the location broker creates a network-services request and connects the
application to the ORB

— 1f a “trader” service is included, each server can register the services it
provides

— broker can then substitude other servers if a server fails or is unavailable

34

Additional services of ORBs -9

ORB

Other services

memory management - memory allocation may be controlled by the ORB
In all the communicating processors with memory management

versioning and cache management - object versions can be kept and
managed via the directory or information repository with the relationship
between object versions

security services - many of product implementations already use various
forms of security checking

time services - some product provide a bridge to DCE services

error handling - error at the client and server may be logged, analysed and
queried

35

Administrative services of ORBs -1

ORB

* ORB usually provide the following sorts of service for administering objects

e object naming service

— employ some sort of naming scheme and services to handle naming
conversions, so that objects are bound with names that are not
Implementation-dependent

» object life cycle service
— basic services to enable objects to create, move, delete, copy
* object property service
— sort of properties the developer can may include version, the date created,
time created, the person creating the object, synonyms of the object name

36

Administrative services of ORBs -2

ORB

* Object relationship service

— objects are related to one another by inheritance or by being contained by
other objects

— dependency between objects are known as object relationships

— the services provided in this context ensure that information about the
connections is kept

— used to refine the life cycle services
* object query service

— services to find out what objects exist, what their properties and
relationships are and what they do

* object licensing service
— way of charging for objects and licensing objects to users or applications

— the services are needed to handle the charging and billing when objects
are used, either on a one-off basis or one a per-use basis

37

Development services

ORB

Use a purpose-built language for defining the interface to an object and for
constructing message

— CORBA-conformant products use IDL, OpenBase use CDL, Netsmiths
use OIL

— advanced visualisation tools
— compiler

— debugger

— test tools

— object browsers

38

Two Category

ORB

39

CORBA-based ORBs

ORB

« Common Object Request Broker Architecture and Specification (CORBA)
— standard by the OMG
— the most influential standard in the ORB

 ORB
— heart of the OMA
— communication mechanism

 enabling object to send and receive messages in distributed,
heterogeneous environment

— various services

» provided by classes and objects which are themselves invoked via
object interface

ORB

CORBA-based ORBs

» OMG(ODbject Management Group)
HHAlIe == MEot= 24 AlE

OMA(Object Management Architecture)
- 0|82 =4t =& 6}01|A sS=2 U
NS0l AMZ Selold, &8s s
ORB

A = — T =<
UE=E ot HE |§

CORBA (Common Object Request Broker

CORBA (Common Object
Request Broker Architecture)

ol Hu

(Object Request Broker)

Architecture)
OHIERA AIAEUH AN 24Xl 2+2

- 01
S¢S JtsotH ol == 0218l X
 ORB(Object Request Broker)
— M0 22U0|HE/AH SES A5
910

ol == 0I=

41

CORBA-based ORBs
QRB’S SED!'ICES _] ORB

* Object services
— provide system-level services for objects.
— basic functions needed in all object-based environments

— specification and description of these services are defined in the Common
Object Service Specification (COSS)

* object naming, object events, object life cycle, persistent object

 object relationship, object externalisation, object transactions, object
currency control, object licensing, object property, objet query

42

CORBA-based ORBs
QRB’S SED!'ICES _2 ORB

o Common facilities
— described in the Common Facilities Specification (CFS)
 cover such thing as security and time
» cover less fundamental services than those provided by COSS
» Horizontal facilities
— are used by virtually every business (Enterprise-wide)
» Vertical facilities
— specialized to particular industry groups (Domain-specific)
« Application services
— provide services for applications.
— more straightforward

— cover general-purpose objects which developers might find useful in
building applications (checker, graphing objet, mailer, spreadsheet ...)

43

CORBA-based ORBs
Object Management Architecture ORB

Horizontal
CORBA facilities

Vertical
CORBA facilities

Healthcaref@ Financial

Not
Standardized
by OMG

.

Object Request Broker

Lifecycle

J

Persistence

Naming

CORBA services

44

How does CORBA work?

ORB

provide basic run-time service

— Basic CORBA implementation may only provide simple communication
Services

does not mandate the location of ORB process
— ORB functions could be on a separate host, client, server

many CORBA implementation use an approach which has some of the ORB
process on the client and some on the server

— central component does not used, object requests are passed directly from
client code to the object implementation

use an implementation repository

— information about the objects (where they are), a description of the data
structure (used to hold state information), activation information, the
methods, the interface used by the object

— enables CORBA to send request across the network and find the objects
requested

45

Services of CORBA -1

ORB

e Eventservice

extend the basic capability of the ORB to support simple synchronous
communication

 provide support for synchronous request

 bringing the ORB services closer to that used by messaging software
broadcast of events to many objects
the receipt by an object of multiple events
push and pull delivery models

reliable event delivery through what OMG calls “appropriate event
channel implementations”

generation of events without needing to know the customer
receipt of events without needing to know the sender
multicast events via event filtering

46

Services of CORBA -2

ORB

Life-cycle service

responsible for create, delete, copy, move distributed objects in multiple
locations

“factory”

— collection of objects geared towards the task of functions such as creation
and deletion

— through factory, objects are designed to help the user manage application
objects, accessed via IDL interfaces

47

Services of CORBA -3

ORB

* Naming service

— provide the ability to bind a name to an object relative to a naming
context

— give objects an identifier that is independent of computer language, h/w
environment, location and international language

— based on creating, removing, listing and generally managing names and
contexts and so on resolving names and binding objects to names

48

CORBA-based application

-

!

Dynamic
Invocation
Interface

Static
Static IDL
IDL

Stubs

Skeleton

Interface

T —

Dynamic

Object
Adapters

Interface Implementation

Repository Repository

ORB

49

DCOM vs. CORBA

ORB

'DCOM3 CORBAS|
sy

ORB

- ehuBeoN

52

ORB

COM/DCOME| =&

=
)

SEELZ JHINYETHAZ A

Ab

AN == o
TTe=EsE= T

53

COMO| &t
o ATE N itd sfat BT
o X X ZZ)0l HEH2
- Hl=zl43t
— & Al2] UpGrade
— MALE

HIMXe ZZ2 04T 2 HE
- AATE THALSOl 2/ & 2
- HEANHO CHet 2 &

- HA2C2e = EE

ORB

54

— Component Object Model

ORB

95

comMel 14

ORB
COM M H

— AAIS HEIAE otLt Ol &2 QTH Ol AE Soll 2 50l = JHetkLt.
TSNS AE

— MIDL=S Sofl 24d gLl

ID2t CLSID

- 2ct0IHEN A A4I0] o= COMA B Ol EZ2ot)] #loll Al=E ot

= IOl ADJF S,
A Ml=gtLt.

L

.

O S ACIR] =< o COMU|

56

COMe &)

COM Al &&
— DLL, Active X & EH
e 22I0|HEA St FAIAUHNMN =&
« 2210 01| N 2&E COMA H 2l CIE{H O] A
H 2 A—Itll E S E°5tL.

— EXE 2t S Ef
« SC0IHER Edl& F=AFFUHA &

r&"

TSN AGS A=z 50| 0|FHA L

=

ORB

ol COMA{

COME| 2 m=..)

ORB

58

o] E A
COM2l EA

Binary M AFS <
- LhE MOl = BH0IUHel ZEE &4 8Bl0l JFHLH AFE
- ZDE MAIE SHl o &
- Jiatel= Z0IH HIOI= At=
 (Virtual Function Pointer table : vtable)
« 2=COM 2&xll= BtEAl &= LOHE
JEAEOFotd, Ol BIE22l == ¢HHIU=
ctO|HE= COMA AN CHH| U= &
= COM & EH E = lunknownZ H

0
o

T e
=
N0 ru

(wm]

> > 0% o0
£ o > K
S ot e 30
S qrefr

- -

A=
—=
A E
—-=

o
0

=
=
=
=
c
o o /@

59

COMe =S4

ORB

Class lunknown
{
public:
virtual HRESULT Queryinterface(REFIID iid, void** ppvODbj) = O;
virtual ULONG AddRef() = 0;
virtual ULONG Release() = 0;

UL VTBL Pointer
private Z/4 Lo/ Ef

A
H

COM ZEHE Function(pObj, argl, arg2...)

o0

COMe| E4 ¢

Ol H O] A
— Querylnterface

==
ﬁ [N |

« COM AWM MHAIE JisotEs U= &
. % rOI_EE Ol &= HLOIEHE AS
g = A
A ©
SlE{Hlo|A& | B O ZH |
C o

ORB

ol

COME =&dm=%..)

dIHAA 2 E D™

— AddRef
— Release
— COMZA Mo A ~H
e COMAKle= AAE MY

ORB

ULONG CMyComponent::AddRef()
{

%

return ++m_cRef;

ULONG CMyComponent::Release()

{
if (--m_Ref ==

{
delete this:

return O;

}

return m_cRef;

0)

DCOME| A&

ORB

e COMZL =&
- UHE=HSCz AZ= 3 FH 2l A= T EHEZLS] S&l A
o Z2240|HE JIEUHMN COME 2 X0 hE MIIHA 224
— In Process Server
— Out of Process Server

— Qut of Process Remote Server

gl

DCOME| 2 4i=..)

ORB
COM COM
=2 o] E — | —
= *O'J—+ O et | [mEe PO EEEE
Ze}o|AHE O— &B=xHE , ,
Z2lo[HE SalojHE
2 OFR| = X} BEGEREC E"._FX‘I{-S—K} BEGEREC
LPC e LT
COM COM +
=8 E — — T
Zajolele 2ajojels
1 obR| Z A} DEGERPE 2 obR| 2 A DEERPE
i ® s
 EEeZ AH L ER2E3 AH

N F

o4

ORB

E A
-/ O

DCOMZE]

JI0

MAFE Jt

K

.

[0

0

0

>
Ok

</

[H0

—r

~J

l
IH
M0
TS

IK

i
I
zr
i

1)
H

m0

o3
KO
2

o)

™

<
<

o}
Rl
1KY
00
DF

I

oA

JHE A0 M=0lA E L

HHOIA M-S

65

ORB

)

=
=

DCOMS| S &

EH
=

et A JIE2E D

& ¢

s SUIIE A

—

TEZS

— Ping
o135

CH

)
o

ol

£ Xcl

IOl &

oF o
Ls

OfLt

o
=

ol

-
o

all

il
<

Al

<

ZEl L2 A

180
_Io

CH

Al

JtJls

=<
-

ol

==
S

A E
—=

H CH+E @& 1O

Ol CHo

—

- E

24 11
O L

A

) 0
ol ™

HO [0

66

DCOME &=

S S =0 A HAI2HS] = H 2

ch SFH 2 Ping HIAIA 852 = 2= A &
I=A 24 A&

|
|-
« HE=R g/ al=& S0|)] #let & X

et Eot g M=

NTEOF JI A AR (BHE Jts)
e ZE2NTNLTM OIS U &ES
HHZAHAES I2ER

°
W

DCOME A=s@=..)

ORB

SCf0/HE Z LY . ZFA HFH

Al HAE

/O ZEA|

’!!ii..' ol 0| EJ B[O] A

O HAEZUHE

>

\—

gal-()lo'_-[E W
o

68

ORB

)

=
=

DCOM2| A=

Al A

oJ
T

__3._
1of

]

« DCE
— DCOMO|

8 M=

B[
=
Il
70
K
ol
W]
T
Y
w0
i0J

=Y

0

0

>
Ok

&1 HI Ol & Al &

At Q1
ctOIAE/AB & _1dl0]

=
<)

ot At

c

69

OISt IRES ZWE X

DCOME A=s@i..)

1=

I2EZ EHH/T2EZS2| EOr Xl H K&

WIn95/WInNT

UNIXZE DCOM - 2L ES|H AG?t CIAIE,
MS &= e

AtBHDCOM A= - IE3.0 R & AtHFIFAH A

N

ORB

70

ORB

)

=
=

DCOME A=

NS

|.

JI0

40
o)

o]
ﬂ

I

oJ

| DCOM

o)
<0
oF
W]

2|

INFERE|

|.

<0

— J}

0

o7

1

s ddl

DCOMZE| J|

ORB

Ki

J0

o]
Kr
)
Jlo
X0
0

s M=z U

el
Al

-t

<0
100

Jlo
X0
0
{0

(I
>

0.
Al
K&l

4 2|

1k
[

22|t

S8 2Lz)H

Ab

clE =
g

)
vl

0.

=Y

ot Al =Bl

o0

- Cf

&

2EZ X

)
OF
=
40

n

alll

/3

« OMA

CORBA Overview

Vertical Common Facilities

Horizontal Common|Faciliti

/Application
Objects

B

CORBAfaciliti

Systems
Mgmt

1eS

etc.

e

Task
Mgmt

C

Object Request Broker

e
Elamin% Pe[rsister]cel_[fe Cyc]e P[operti}sc'o[ncurre}cyﬁ:«{llectio}us g@

|Trader|

e oS s 1) i () 8

hang
ngemen

o)

CORBAservices

ORB

DCOMICORBA 7% 4|

75

DCOM

- COMOll 2D sS &H A2 A=z &H A E Xl&ol
DCE-RPC<| 0l ORPC(Object Remote Procedure Call) HI ==
— ORPC= H£= RPC 3!l DCOME| CIHHIOIA EOIHE
= IPID, HMEE Ss= 50t dZoff &F=+E i%@ﬂ
« IPID= MO ®IXlet E& 22 E& 9 E
Al =l CY.

ORB

1
.
F

K

ma

—
u—
g

O}
l_
“E0

)

a4
=

DCOM(

6

ORB

o)
JI
|
o)
o
ay)
i

)
0
K
10f
(I
U]
<

(=)

)l
o)
KF
~J
I
ol
A<
JIJ
03
)
~J
[H0
<
KF

CHAl RPCH|

M0
0l
fll
ol
kil
104

0.
on
)
=
Kl0

-t

00

-4

v
ofn
oll
J

ol
Ol
0[0

KK
uin

S Ul A

— ORPCH|

StLCt.

7

CORBAZ]
= ORBZ}
otLtel &
AE 0| L
LHCE,

CORBA

Of Z2C0IAHE/MH 2HE

AN 2l

A H =

ORB

CORBA@GI=..) -

A S AR AHIAN HAQ Ol

. 2210I01E= ORBOIAI LOILH= AT 241 2HO] S A0 L}

B3 gy HRYY S2 2215 50, ORBI} T 2OIAl 5
=01,

= 45}
- — =
0l 2T HHAAS SO HASE SEot)| 98l

ORB 2t RPC

ORB

RPC7/&/

30

CORBA 2.0 ORB2| 14

< Client § (Object Imp.D\

Dynamic

Static Object l
Dynamic | | Client IDL ORB Skeletons Skeletgn Adapters
Invocation|| Stubs Interface |, | Invocation

,—

Object Request Broker (IIOP)

Interface
Repository

ORB

mplementatio
Repository

31

=£H0]
ol @

DCOMS| &

OLE 32

SCM

EEA' A E 4 3T L-
O— 4 | —H O— ey -1 E
=1

G oL DEE ol - HBCE
H3XE | RPC | | HISAL | RPC
EE2EE AE T2ED A

O

SCM

¢ DCOM L/ES

ZEEZ

ORB

32

CORBAZ| &MAl 2L

ORB
J2
Zzjolei= - -
T -
TR CORBA : : :
- gajojolE : i A Adaf=
Saaany | 2o .| ORS(s)i(orbixd)et| | 77 s
U =FEIE ZiA| oi2{E{(CORBA lib)

T AL

My 2 Fef

DCOME| & Xl -4

ORB
M it o=
S20[AHE o=
mEE
2x
= A ! i
HE COM. . . i ‘T |
S ZH R o| : i =
nEx-Ijlq EEE-IM 1] [fieti| SCM(S) e ol ei= 20 7 OQD
il gt e] - ExxERl PV 2w A || EISH

2tofof
ZZ2EE
T

Ping client (g Ping server
' Med 2=

ORB
. D2 Z20Y X
- D200 2H
. XOIE
- 22H0|QES HYE LET HACT 55 Y

- M2 A g0 =)|et S

35

&P HSsSm=..) .

- DCOM

2ct0| ¢ E= COM

ct
COM2| StEXAE iiﬂ MHE Al &HEHCE
MHl=e X2 C= D= CLSIDOICH 220 A HERIE MAGID S2EHCH AHEZRS
Ol &ah & OO*EPE MSIFZ2 MK JICHEICH 2e0IHEZRH SsHeE QA2 UE
MHEDE H el st

HC}.
COME2 A HEL X
Createlnstance() 0l A

=

A
Querylnterface() S
COMZ2 CIHHIOlA ZoIHE St 0IAHE A &l = =L

36

ORB
« CORBA
- 2c0IHE= 220|HE A HA &4 :bind)E S =&}
— ORB= AI&ot= M E L&dle MHE A& SICH
- A= XND=E 2= HAE =D 243 AIZICH (2 ME XA 2 I HSASE M
dotd S=EE = AN ===0)
— ANt = CORBA:BOA:implisready()£E S =0 ORBOIH 220|HE QES &= = U

E'.i H= Ol-a| [:l_

A=

— ORB= HA dlIHAAES SH0IHEUH sHA=LH.

37

K|0

N

Kt

ORB

0

il

-t

g
o

- NBIZH S=

38

=

.-
Ol
=
IR

ORB

- DCOM

CoCreatelnstance()E S == 22 ™H COM 2t0| E 21 2l = SCM(Service Control Manager)
oz Y?2ICt.

SCM2 24 BEL| I SEL N J=A =eletlt.
EcIE FIMA Y A2 HH BZ 0
M= 2ciA 82X HIOIZ0 U= 2= K
SCM2 HIOIZ2W AN EQIHE &1, 11 2¢ reatelnstance()E =
Createlnstance()Jt ZRIEHE S8, COM2 M2 M = 2K ¢l
8= Bt=C0h

= — —

39

HSos..)

N

KH0

ORB

DCOM

5|

il
<

<I

H 1 E1H Ol

A5

F

= =
= 0O

F0 Bl K AEL

O, MBZXICl A Hl @B TH Ol A2F A H &L

=
=

t

—

]

UlJ

oJ

un

MHr
H

=
Al

r
uln

oJ

AE

M
=y

<

E1 1H Ol

oJ

=
<Nl

]

F

D AIKIAERIE

1o
n0
<l

=

10t

i

oJ
I

)

MHr
H

=
Al

Ct.

F

COM ctOlEdicl= 220IHEZ CIHHI Ol A = A0 CHet ZCIH

0.

24
=

Mol A

H

~

Rl

=

_|

H

RPC

JJ
o3

Bl

&l

il
<

cd =L}

=
=

=
=

90

oA
3
x
Ol
-
IR

ORB

« CORBA

chind)S 22 22, 220/HE AE2 &L 2 ORBAY | L stLt.

ORB= /& M&EAUH MHEBZ 0182 211, MHE &4 3tst.

MHeE XN3& = 2= HAE =0 &43tstCt CORBA::Objectl] MM Xt= & st
dlIHed A ID2Z BOS::create()& S =oll Al dlIHHAE S =Lt 1 U= obj_is_ready()E
SEofl 22X dHeEAE SSetCt.

AL MY Xt= AZYE SeHAQ AAHAS MMSHT,

ORBII ZHHl HIIHAAE Z20IHEZNH BUHH, ORB= EEA| Sl A2 OIE{HOI A
E MAGtD oY A HHAAL &TH Z=Al 22X HIOI=0 s=¢etCt

Z240|HE AE2 ZA0|IHEN XM dHEAE =HET

91

or?l A=

Q0|0 IRE= X
— ANH 2 Z2C0IHEIINANZ CIE ZEHW A XIot] QU
Al &
CORBA
— ORBZI2 EA2 MMOZ &S AH 0 & UL
* GIOP (CtE g M2
e 1IOP (TCP/IPHZ X| &)

ORB

92

or¥ AlsS@s..)

DOCM
— OXIDZA A
e IRemUnknowm @I E HIO| A X &
— RemQuerylnterface()
— RemAddRef()
— RemRelease()

e 22 XX LAEHZ Jt= W IS & = lunknown Hl A~ &

25 FUHF0 ds ML
— DCERPC EAIGl Jl&E
* IRemUnknown &I & H| 0| A, Pinging 22 &2 =t

ORB

93

or¥ AlsS@s..)

AHOI &
- 323 OHHOIA ZRHL M dHE A AHSFS EE2E 2
ctOIHENH dEot= &8

C
(@)
UM dEE 2

L

- Li&Fet & ol At=)t Dt&deE 2& 2o

ORB

94

or¥ AlsS@s..)

ORB

- DCOM

?| 2 & CoCreatelnstance() 2 = &£ U= [, 220 HE =2 SCMO| HIXIAERIE &0t
de|l& 2HIFOE BFHE A2 AHH /2™ IRemoteActivation RPC 91 E{ IH 0| A 2|
HIA~EE S =6t

MNH =2 SCMO| MHE 243t Al2|®H 28X &I A

MB 0l E206tJ] ?Iet RPC 8H2l E 1t OXID A0l 2]
ol S== L.

Hl

B2t AZE L), OXIDE ':”EEP.
MNH=2 OXID ElEHE =

2
OF!
0

Createlnstance()? SdF= ZoHE HMAEO Otad e M, Z22H= AWM R E
SHOIE{H Ol A ZOIE| XIAIXH(IPID)JF St SHEIC) €€ ZOIEE LIEIS A YA
Ot A EICH 22H dIIHS AN = IPID, OXID, E2&Z24Y otLIS| OXIDEIZEHFTA S2
LHE 0l &4 RULH.

95

or¥ AlsS@s..)

ORB

- DCOM

MH =2l SCMOILt 220l HE =2 sSCM= Solf Otara =
QU B EE A= 2H dlIHe 10 A OXIDEF OXID 2| &
OXID2Z|ZH 2| I0XIDResolve::ResolveOxid() HIAEE S
Z2t0|HE S OXID 2| EH = OXID2 A & BT
OXID2| ZH 2| 10XIDresolve::ResolveOxid() 0l &~ &=
RPCHICIE & &S &L

Zcl0|HES 2Ed = WES JHAIoH] 2l ESE A0 RPC HICIE S =4 =0 0| E
H ot Xl =5
HZE RPCMEO

O

=
rr
>
>
T
=
HU
0
0x
rn
e
m
=
=)
| >
| El
JH
>
i
lo
¥
ro
m
=
o
| >
=2

96

or¥ AlsS@s..)

ORB

« CORBA

Sl el hind() QHO0| SO0, 22H0|HES ORBE XIR5Hs AW JIHE 2AX| T}
0l 201 2=Ch 1 C+S TCP/IPE S5l MU= ORBOI Q8 S MIBHC

MHZ2 ORBII AIHE 43 AN, 2= MO Qo A3

COEBA::Object &4 & X} It S &=L 1 CHE BOA::Create()2F 0l Al BOAE= &HHE A3l=

Or= 10, Mil= 2l IDE € =Ct 2l AIHHIOIAL 3 0|8, dIHe A ID, &2

FAE = U dHSAT SHERCH NIOPEZEZS &) U= 220|HEE
ol M= JIH 2l 0| S, TCP/IIPEEHS, object keyE L &ot= &5 &= Jtsst 24X

dIHe A S =L BOA= ORBO| 22X dIIHA A S S=¢etL.
Al dIHSADF SU0IHESCZ SO0ILH, ESEA = HE =42 Z0HH AB0 &
W AZ S st

ron I

b

97

= L_
DCOM/CORBAZS| + O < S AFotHCH
- AR N Mo 2t EHS HZ2E ol=ote 24 Bl AlIAEIS| IR A
= X0l &
— DCOMO C+= CIH HI Ol A &M= (Queryinterface() X&)
o X AAUAN OIS AHHOIAE SHCZ 2&8 &= UL
— CORBAZ2| 2= 2IHHIO| A= CORBA::0bjectE &t =L}
SE die A M4 ALY E DD Edets 2= HMH =S
A ANABO SHO=Z

M2 S,

Z=elistlt,
DCOMUI M= A &EE ot HLE DCOM e Et

10I0f Z2E2 2 X (RPC/ORB)

ORB

