
1

ORB

Object Request Broker

2

ORBORB

• ORB
– provide communication and management services
– enables objects to communicate over networks

• request and receive responses
– based on RPC and message queue

– Two category
• OMG: CORBA
• Microsoft: DCOM (Distributed Component Object Model)

3

ORBServices of ORB

• Basic services
– hide network details from the object

• providing network transparency
– handle object request and the synchronization of the request and delivery

of any response
– handle the exception to the requesting object

• Extra services
– provide administration and development services

• to create and terminate objects
• to debug and test an application
• a form of directory service

– provide extra run-time services
• multi-threading, security, load balancing, and transaction recovery

4

ORBWhat are ORBs? -1

• is middleware
• enables objects to communicate over networks with different

communications protocols
• enables objects to reside on different hardware platforms
• enable inter-communication between objects
• enable objects to be moved about the network transparently
• provide mechanism by which objects make request and receive

response
• responsible for managing and locating the objects
• support both inter-object communication and communication

between objects and external services
– these should be transparent to the application programmer

5

ORBWhat are ORBs? -2

• objects interact by exchanging request and reply, either locally
or over a network (About objects : application, process, object
class, instance of class)

• act as the intermediary between objects
• locating the object on the network and communicating the

request to object
• provide basic communication services

– hiding network details from the object and providing network
transparency

• handle object request
– handle the synchronization of the request
– delivery of any response or exception to the requesting object

6

ORBWhat are ORBs? -3

• provide extra services (run-time services)
– provide administrative and development services

• administrator to create and terminate objects, developer to
debug and test an application

• services provided by ORBs differ between product implementation
– multi-threading, security, a form of directory service, support for

features such as load balancing and transaction recovery,
location brokering

• is base of a communication layer provided by a low-level
communication protocol, remote procedure calls or message-
oriented middleware

• influence the style of communication supported
– synchronous or asynchronous messaging

7

ORB

Distributed environment
with ORB

Remote Method Invocation

ORBORB

ORBORB

ORBORB

Clients

Server

Object
Implementations

Object Request Broker

Clients

8

ORBBasic Concept of ORB (1)

Client

Client

Network

Object

Object

Object

Well Defined
Interface

Identification
Encapsulation

Server

:

9

ORBBasic Concept of ORB (2)

Well Defined Interface

Operation

Signature

Parameters

Results

Exceptions

Request

One way request

Two way request

No response

Expect a result
- synchronous mode
- deferred synchronous mode

10

ORBHow ORBs work? -1

• based on the idea that applications are written around collections of objects
that isolate the requester from provider (of the service) by a well defined
interface

• interface to an object is fundamental to the way ORBs work
– describes all the possible operations that a client may request of an object
– is independent of where the object is located, what programming

language it is defined, how its services are implemented
• each operation specified within the interface has a signature that describes the

legitimate values of request parameters and returned results
– parameters required, results, exceptions, additional contextual

information

11

ORBHow ORBs work? -2

• Based on “classical object model”
– where the client sends a message to the object and the object then

interprets the message to decide what service to perform

– at run-time, client issue messaging in the form of request (expect a result,
require no response)

– one-way request
• has no need to synchronise with the target object’s execution

– synchronous mode
• client pause to wait for completion of the request

– deferred synchronous mode
• client does not wait for completion of the request, but does intend to

accept results later

12

ORB

Distributed environment
with ORB

13

ORBORBs?

• Static ORB
– a similar way to RPC
– an interface is decided at compile time
– synchronous requesting

• Dynamic ORB
– an interface is decided at run-time
– deferred synchronous requesting

• ORB functions
– finding the code and data that implement the object

• implementation repository
– communicating the data making up the request
– invoking the object that is to receive the request

• dynamic service activation
– receiving from failure or error

14

ORBStatic ORBs

• the interface and function calls have been defined, the objects are compiled
– similar way to RPC (restriction : request must be synchronous)
– creating new threads at the client end
– (in principle) object has to issue a message and wait for the reply
– application which use static invocation must have all their interface

definitions available at compile time
– once executables are produced, the application structure is fixed

• less flexible to network changes
– if objects are changed, the source code has to be altered and recompiled

• faster message passing
• simpler to program
• improve code quality by allowing compile-time type checking

15

ORBDynamic ORBs -1

• do not require the programmer to specify the interface to be used in the
compiled code

• instead, code is written by the programmer that uses a separate specification
of the interface, not held in the program

• determine dynamically what interface are available (reference to some file :
interface repository - in CORBA)
– provide a list of the interface available
– arguments, parameters
– enabling decisions to be made as late as possible

• manipulate the lists and puts them into standard form before routing them to
the appropriate object implementation

16

ORBDynamic ORBs -2

• support deferred synchronous invocation
– control returns to the client after the request has been made, and the client

is free to continue executing code
– after specific period, client may poll the ORB to retrieve the result
– support multiple request to many objects

• more flexible to change
– no need to recompile when change occurs to the interfaces
– object has access to any object on the system and to all the interface

• require more code and effort to program and are likely to be slower than
the approach used with a static ORB
– errors being made in the code is increased as type checking has to be

done at run time

17

ORBORB functions -1

• When client issues a request, ORB is responsible for

– finding the code and data that implement the object
– communicating the data making up the request
– invoking the object that is to receive the request
– recovering from failure or error

18

ORBORB functions -2

• Locating the object
– may use an implementation repository
– contains information about object

• location
• description of the data structure used to hold state information
• operation and interface used by the object
• (interface repository : detailed info about the interfaces)

– approach used to create information about the objects depends on the
standard to which the ORB conforms

– most implementation-repository information is created at object-
installation time, by the ORB administration s/w, by the object itself, by
the administrator

19

ORBORB functions -3

• Communicating the data
– assumed function of ORBs

• conversion of the data required when communication is between
heterogeneous machines

• majority of ORBs provide this service, some do not

• programmer will have to the conversion required if the
communication services are weak

• transport protocol is hidden from the programmer
• ORB handles network protocols (ORB may support TCP/IP)

20

ORBORB functions -4

• Invoking the object
– provide mechanism for object activation which allows them to be invoked

only when they are required
– when object is requested, ORB will create an instance of that object

which is then used to process the request
• subroutine is held in a library, and a copy of it is created in core ready

for processing only when it is requested

– ORB’s responsibility
• find the object
• create object instances when they are needed
• remove object instances when they are no longer

21

ORBORB functions -5

• Invoking the object (cont.)
– dynamic service activation

• when object invoked, it clones itself and the instance is loaded into
the machine

• once the object has completed its task, it may then be deactivated by
the same service

– the object interprets the message by selecting a method based on the
operation requested (method is the code used to perform the service)

• input parameters and data passed in the message are passed to the
method so that it can use them to execute the request

• request then results in the service being performed by the object on
behalf of the client

• data may be created or updated, results produced, and the internal
state of the object changed.

22

ORBORB functions -6

• Coping with failure

– ORBs do not necessary provide services to manage transaction failure
• (these may have to be handled by application program)

23

ORBORB 호출방법

Object AObject A

Object Request BrokerObject Request Broker

Object BObject B

1. Object B 가어디에
있는지문의한다.

2. 위치정보를
회답한다.

3. 서버가기동하고
있지않으면

서버를가동시킨다.

4. 세션을붙인다.

24

ORBWays of implementing ORBs

• generally defined by standards and so depend on the particular product
implementation
– location of the ORB s/w
– language it is written in
– protocol used for communicating

• ORB can reside on both the client and server
– with location services in ORB to establish communication between client

and server
• all clients communicate with one server that contains the routing mechanism

for the ORB

25

ORBAdditional Services of ORBs

• Event service
• Multi-threading
• Resilience and Fault-tolerance services
• Communication-optimization services

– dynamic routing, load balancing, performance monitoring, and
– dynamic loading

• Transaction services
• Location brokering and object-broker services
• Other services

– memory management
– versioning and change management
– security services, timing services, error handling

• Etc
– Administrative services and Development Services

26

ORBAdditional services of ORBs -1

• Event service

• extend the capability of ORBs to support various communication approaches
– one-way, synchronous, deferred synchronous, asynchronous, broadcast,

multicast

– basic ORB implementation require
• the client issuing the request and the object satisfying the request have

to be up and running in order for the request to be successful
• if a request fails because the server object is unavailable, the ORB

sends the client an exception which it must then handle

27

ORBAdditional services of ORBs -2

• Event service (cont.)
– in order to obtain this de-coupling of consumer and supplier, most ORBs

use intermidiate objects that act like a sort of post-box for storing events
received from multiple supplier and sending off events to multiple
consumers asynchronously

• in CORBA, terms these objects event channels

– event-channel object’s responsibility to determine how events are
propagated

• broadcast, multicast
– ORB terminology use event filtering instead multicast

• all event filtering is achieved via event channels which can select
events based on criteria in the message or by the message or by
criteria defined in the channel itself

28

ORBAdditional services of ORBs -3

• Example use of event-channel object

ORB

Object
3

Object
5

Object
4

Event 2 Pull

Event 1

Event 1

Event 2 Pull

Event-
channel
object

ORB

Object
2

Event 2

Event 1 Push

Object
1

29

ORBAdditional services of ORBs -4

• Multi-threading

– ORB can create new client threads each time when they bind with an
object’s implementation

– ORB support for thread management and scheduling

– whenever a shared resource is accessed, locks are applied by the ORB
and released upon completion of the thread

– ORB can also be multi-threaded
• with various degrees of multi-threading support
• the number of threads is limited by the virtual memory available

30

ORBAdditional services of ORBs -5

• Resilience and fault-tolerance services

– provide facility that automatically cope with network failure by
• for example
• re-connecting a client to a copy of the object the ORB creates and

clones
• client has no need to know of the failure

– object replication
• ORB use fully replicated ORB cores to provide continuous back-up
• ORB prevent loss of service due to network or host failure

31

ORBAdditional services of ORBs -6

• Communication-optimisation service
– optimise the communication and number of calls made by avoiding

unnecessary calls
• for example
• if the client and server object reside on the same machine, the ORB

and network may be by-passed altogether
– dynamic routing - of messages to objects
– load balancing - with the facility to query the loads on hosts to determine

the appropriate host to use
– altering - a performance monitor bridge to systems management tools
– dynamic loading - the object is loaded at run-time from anywhere on the

network to an appropriate host when it is needed and where it is best
placed

32

ORBAdditional services of ORBs -7

• Transaction services

– include the ability to log transaction
• if the network fails to recover from the error, roll back all the

resources involved to their prior state

– record the state of participating objects in a cache or log
• with the ability to roll back to prior state

33

ORBAdditional services of ORBs -8

• Location brokering and object-broker services

– enable an application to locate objects access multiple ORBs
– the location broker creates a network-services request and connects the

application to the ORB

– if a “trader” service is included, each server can register the services it
provides

– broker can then substitude other servers if a server fails or is unavailable

34

ORBAdditional services of ORBs -9

• Other services

• memory management - memory allocation may be controlled by the ORB
in all the communicating processors with memory management

• versioning and cache management - object versions can be kept and
managed via the directory or information repository with the relationship
between object versions

• security services - many of product implementations already use various
forms of security checking

• time services - some product provide a bridge to DCE services
• error handling - error at the client and server may be logged, analysed and

queried

35

ORBAdministrative services of ORBs -1

• ORB usually provide the following sorts of service for administering objects

• object naming service
– employ some sort of naming scheme and services to handle naming

conversions, so that objects are bound with names that are not
implementation-dependent

• object life cycle service
– basic services to enable objects to create, move, delete, copy

• object property service
– sort of properties the developer can may include version, the date created,

time created, the person creating the object, synonyms of the object name

36

ORBAdministrative services of ORBs -2

• Object relationship service
– objects are related to one another by inheritance or by being contained by

other objects
– dependency between objects are known as object relationships
– the services provided in this context ensure that information about the

connections is kept
– used to refine the life cycle services

• object query service
– services to find out what objects exist, what their properties and

relationships are and what they do
• object licensing service

– way of charging for objects and licensing objects to users or applications
– the services are needed to handle the charging and billing when objects

are used, either on a one-off basis or one a per-use basis

37

ORBDevelopment services

• Use a purpose-built language for defining the interface to an object and for
constructing message
– CORBA-conformant products use IDL, OpenBase use CDL, Netsmiths

use OIL

– advanced visualisation tools
– compiler
– debugger
– test tools
– object browsers

38

ORBTwo Category

CORBA

DCOM

39

ORB

CORBA-based ORBs
Introduction to CORBA -1

• Common Object Request Broker Architecture and Specification (CORBA)
– standard by the OMG
– the most influential standard in the ORB

• ORB
– heart of the OMA
– communication mechanism

• enabling object to send and receive messages in distributed,
heterogeneous environment

– various services
• provided by classes and objects which are themselves invoked via

object interface

40

ORB

CORBA-based ORBs
Introduction to CORBA -2

• OMG(Object Management Group)
– 객체지향표준을제정하는컨소시엄

• OMA(Object Management Architecture)
– 이종의분산된환경하에서응용프로
그램들이서로통합하고, 상호연동할
수있도록하는표준기술

• CORBA (Common Object Request Broker
Architecture)
– 이종의네트워크시스템에서객체간의
통신을가능하게해주는아키텍처

• ORB(Object Request Broker)
– 객체간에클라이언트/서버환경을구축
해주는미들웨어

OMG
(Object Management Architecture)

ORB
(Object Request Broker)

CORBA (Common Object
Request Broker Architecture)

OMG (Object
Management Group)

41

ORB

CORBA-based ORBs
ORB’s services -1

• Object services
– provide system-level services for objects.
– basic functions needed in all object-based environments
– specification and description of these services are defined in the Common

Object Service Specification (COSS)
• object naming, object events, object life cycle, persistent object
• object relationship, object externalisation, object transactions, object

currency control, object licensing, object property, objet query

42

ORB

CORBA-based ORBs
ORB’s services -2

• Common facilities
– described in the Common Facilities Specification (CFS)

• cover such thing as security and time
• cover less fundamental services than those provided by COSS
• Horizontal facilities

– are used by virtually every business (Enterprise-wide)
• Vertical facilities

– specialized to particular industry groups (Domain-specific)
• Application services

– provide services for applications.
– more straightforward
– cover general-purpose objects which developers might find useful in

building applications (checker, graphing objet, mailer, spreadsheet …)

43

ORB

CORBA-based ORBs
Object Management Architecture

CORBA services

Naming Persistence ...Lifecycle

Object Request Broker

Vertical
CORBA facilities

Horizontal
CORBA facilities

Healthcare Financial

...

User
Interface

System
Mgmt

Task
Mgmt

Info
Mgmt

Application
Objects

Not
Standardized

by OMG

44

ORBHow does CORBA work?

• provide basic run-time service
– Basic CORBA implementation may only provide simple communication

services
• does not mandate the location of ORB process

– ORB functions could be on a separate host, client, server
• many CORBA implementation use an approach which has some of the ORB

process on the client and some on the server
– central component does not used, object requests are passed directly from

client code to the object implementation
• use an implementation repository

– information about the objects (where they are), a description of the data
structure (used to hold state information), activation information, the
methods, the interface used by the object

– enables CORBA to send request across the network and find the objects
requested

45

ORBServices of CORBA -1

• Event service
– extend the basic capability of the ORB to support simple synchronous

communication
• provide support for synchronous request
• bringing the ORB services closer to that used by messaging software

– broadcast of events to many objects
– the receipt by an object of multiple events
– push and pull delivery models
– reliable event delivery through what OMG calls “appropriate event

channel implementations”
– generation of events without needing to know the customer
– receipt of events without needing to know the sender
– multicast events via event filtering

46

ORBServices of CORBA -2

• Life-cycle service

• responsible for create, delete, copy, move distributed objects in multiple
locations

• “factory”
– collection of objects geared towards the task of functions such as creation

and deletion
– through factory, objects are designed to help the user manage application

objects, accessed via IDL interfaces

47

ORBServices of CORBA -3

• Naming service
– provide the ability to bind a name to an object relative to a naming

context

– give objects an identifier that is independent of computer language, h/w
environment, location and international language

– based on creating, removing, listing and generally managing names and
contexts and so on resolving names and binding objects to names

48

ORBCORBA-based application

Clients Object Implementations

Dynamic
Invocation
Interface

Static
IDL

Stubs

Dynamic
Skeleton
Interfaces

Static
IDL

Skeletons
ORB

Interface

Object
Adapters

Object Request Broker

Interface
Repository

Implementation
Repository

49

ORB

DCOM vs. CORBA

50

ORB목차

COM/DCOMCOM/DCOMCOM/DCOM
11

CORBACORBACORBA
22

DCOM과 CORBA의
구조비교

DCOMDCOM과과 CORBACORBA의의
구조비교구조비교

33

51

ORB

COM/DCOMCOM/DCOMCOM/DCOM
11

52

ORBCOM/DCOM의등장

• DCOM의근간은 COM
• PRC를이용한원격함수호출을분산응용프로그램개발도구로사용

53

ORBCOM이란무엇인가

• 소프트웨어의생산성향상개념도입

• 객체지향프로그래밍이해결책으로등장

– 비용최소화
– 적시의 UpGrade
– 재사용

• 객체지향프로그래밍의문제점

– 소스코드재사용에의한문제
– 개발언어에대한의존
– 버전관리의불편함

54

ORBCOM이란무엇인가

• 컴포넌트라는개념으로해결

• 객체간의표준통신방법을정하기위한MS의노력
– OLE 버전 1 (객체간의 DDE 통신방법)

• 범용성있는통신방법으로 COM개념도입
– OLE 버전 2
– Component Object Model

55

ORB
COM의구성

• COM 서버
– 자신의서비스를하나이상의인터페이스를통해외부에공개한다.

• 프록시와스텁

– MIDL을통해생성한다.
• IID와 CLSID

– 클라이언트에게자신이원하는 COM서버에접근하기위해사용하려
는인터페이스가무엇인지, 어떤클래스인지알려주기위해 COM에
서제공한다.

56

ORB
COM의구성(계속…)

• COM 서버종류
– DLL, Active X 형태

• 클라이언트와동일한주소영역에서동작
• 클라이언트에서직접 COM서버의인터페이스를사용해 COM서
버의서비스를호출한다.

– EXE 화일형태
• 클라이언트와분리된주소영역에서동작
• 프록시와스텁간의관계로호출이이루어진다.

57

ORB
COM의구성(계속…)

주소영역 A

ClientClient

주소영역 B

COM COM 서버서버

DLL DLL 형태의형태의
COM COM 서버서버

프록시프록시

스텁스텁

58

ORBCOM의특성

• Binary 재사용규약
– 다른사람이만든바이너리코드를소스없이가져다사용
– 코드재사용문제해결
– 가상함수포인터테이블사용

• (Virtual Function Pointer table : vtable)
• 모든 COM 객체는반드시함수포인터를담고있는메모리블록
을가져야하고, 이메모리블록안에있는함수포인터만을통해
클라이언트는 COM객체안에있는함수를사용한다.

• 모든 COM 컴포넌트는 Iunknown클래스를상속해야한다.

59

ORBCOM의특성(계속…)

Class Iunknown
{

public:
virtual HRESULT QueryInterface(REFIID iid, void** ppvObj) = 0;
virtual ULONG AddRef() = 0;
virtual ULONG Release() = 0;

};

Class Iunknown
{

public:
virtual HRESULT QueryInterface(REFIID iid, void** ppvObj) = 0;
virtual ULONG AddRef() = 0;
virtual ULONG Release() = 0;

};

가상함수가상함수포인터포인터테이블테이블

Function(pObj, arg1, arg2…)
{

……..
}

함수에함수에대한대한포인터포인터
함수에함수에대한대한포인터포인터
함수에함수에대한대한포인터포인터

VTBL PointerVTBL Pointer
private private 객체객체데이터데이터

Client Client
변수변수

VTBLVTBL

COM COM 컴포넌트컴포넌트

60

ORB
COM의특성(계속…)

• 인터페이스

– QueryInterface
• COM 객체에서재사용가능하도록내놓은함수포인터를리턴해
준다.

• 클라이언트는이함수포인터를사용해 COM객체내의함수를사
용할수있다.

객체

AA
BB
CC

인터페이스인터페이스

61

ORB
COM의특성(계속…)

• 레퍼런스카운트기법

– AddRef
– Release
– COM객체의생성과소멸

• COM객체는스스로생성하고스스로소멸된다.

ULONG CMyComponent::Release()
{

if (--m_Ref == 0)
{

delete this;
return 0;

}
return m_cRef;

};

ULONG CMyComponent::Release()
{

if (--m_Ref == 0)
{

delete this;
return 0;

}
return m_cRef;

};

ULONG CMyComponent::AddRef()
{

return ++m_cRef;
};

ULONG CMyComponent::AddRef()
{

return ++m_cRef;
};

62

ORB
DCOM의구조

• COM의확장
– 네트웍으로연결된두컴퓨터안에있는컴포넌트간의통신구현

• 클라이언트기준에서 COM의위치에따른세가지구조
– In Process Server
– Out of Process Server
– Out of Process Remote Server

63

ORB
DCOM의구조(계속…)

Out of Process Server

COM
런타임

클라이언트 컴포넌트
COM
런타임

클라이언트
보안제공자

DCE RPCDCE RPC

LPCLPC

클라이언트
보안제공자

DCE RPCDCE RPC

LPCLPC

In Process Server

컴포넌트클라이언트

Out of Process Remote Server

COM
런타임

클라이언트 컴포넌트
COM
런타임

클라이언트
보안제공자

DCE RPCDCE RPC

프로토콜스택

클라이언트
보안제공자

DCE RPCDCE RPC

프로토콜스택

네트웍프로토콜

64

ORB
DCOM의특성

• 컴포넌트재사용가능

– 개발비용및개발시간단축
• 위치투명성제공

– 소스코드의수정없이컴포넌트를적절히배치해컴포넌트간통신
부담최적화

– 다양한성능최적화가능
• 개발언어제약에서탈피

– 두객체간통신방법으로개발언어의특성과는무관한바이너리인
터페이스제공

65

ORB
DCOM의특성(계속…)

• 효율적인연결관리

– Ping 프로토콜 & 레퍼런스카운트기법
• 다양한성능증대기법제공

• 얼마나많은사용자를감당할수있는가
• 얼마나많은데이터를처리할수있는가
• 얼마나많은기능을수행할수있는가

– 대칭형멀티프로세스시스템
– 위치투명성을이용한서버컴포넌트재배치
– 동일한서버컴포넌트에대해다른인터페이스를통해추가기능제
공가능

66

ORB
DCOM의성능

• 통신대역폭과지연시간의최적화

– 단한번의 Ping 메시지전송으로모든서버컴포넌트와의연결검증
– 프록시객체지원

• 네트웍회귀회수를줄이기위한일괄처리방식의대안
• 다양한보안기법제공

– NT보안체계사용 (확장가능)
• 윈도우 NT NLTM 인증프로토톨
• 커버로스버전 5 인증프로토콜

67

ORB
DCOM의성능(계속…)

클라이언트클라이언트측측캐싱캐싱 : : 프록시프록시객체객체

캐시커스텀
프록시

데이터베이스
컴포넌트

DCOM

DBDB

클라이언트 SnapshotSnapshot
캐시캐시

68

ORB
DCOM의성능(계속…)

• 분산암호인증
• 안전채널보안서비스
• DCE 호환보안체계

– DCOM이컴포넌트의위치를숨겨주듯이편리한컴포넌트설치방
법제공

• 편리한컴포넌트설치방법제공

– 위치투명성
– 다양한사용자인터페이스지원
– 편리한클라이언트/서버업그레이드

69

ORB
DCOM의성능(계속…)

• 다양한프로토콜과플랫폼지원

– 프로토콜투명성/프로토콜의보안체계지원
– Win95/WinNT
– UNIX용 DCOM -소프트웨어 AG와디지털,

MS 공동개발
– 자바/DCOM 연동 - IE3.0 부터자바가상머신

제공

70

ORB
DCOM의성능(계속…)

• 인터넷과의연동기능제공

– 가상사설네트웍상의 DCOM
– 방화벽을통해서도완전한동작

71

ORB
DCOM의기능정리

– 컴포넌트재사용으로인해개발비용및개발시간단축
– 위치투명성기능제공으로다양한성능최적화가능
– 클라이언트와컴포넌트간의효율적인연결관리
– 적절한배치를통한성능향상
– 편리한버전관리로분산응용프로그램관리가편리
– 다양하게구비된보안체계로안정성향상
– 다양한프로토콜지원
– 플랫폼과무관

72

ORB

CORBACORBACORBA
22

73

ORB
CORBA Overview

HealthHealth FinanceFinance etc.etc.

DistributedDistributed
DocumentsDocuments

InfoInfo
MgmtMgmt

SystemsSystems
MgmtMgmt

TaskTask
MgmtMgmt

PersistencePersistence TraderTraderSecuritySecurityCollectionsCollectionsConcurrencyConcurrencyLife CycleLife CycleNamingNaming

EventsEvents LicensingLicensingChangeChange
MangementMangementTimeTimeRelationshipsRelationshipsQueryQueryTransactionsTransactionsExternalizationExternalization

Application Application
ObjectsObjects Horizontal Common Facilities

CORBAservicesCORBAservices

PropertiesProperties

Object Request BrokerObject Request Broker

CORBAfacilitiesCORBAfacilities
Vertical Common Facilities

• OMA

74

ORB

DCOM/CORBA 구조비교DCOM/CORBA DCOM/CORBA 구조구조 비교비교
33

75

ORB
DCOM

– COM에분산기능을확장시킨것으로원격객체를지원하기위해
DCE-RPC위에 ORPC(Object Remote Procedure Call)계층을만든다.

– ORPC는표준 RPC 패킷에 DCOM의인터페이스포인터를구별하
는 IPID, 버전정보등을담아전달해함수를호출한다

• IPID는서버에위치한특정객체의특정인터페이스를가리키
게된다.

76

ORB
DCOM(계속…)

– 클라이언트는인터페이스를얻어원격컴포넌트가마치자신의
주소공간에있는것으로간주하고메소드를호출한다.

– 호출을받은컴포넌트는주어진일을마치고결과를다시 RPC계
층에전달한다

– ORPC계층에서호출한컴포넌트를찾아응답을보내는일을담당
한다.

77

ORB
CORBA

– CORBA의핵심은객체간의클라이언트/서버관계를성립시켜주
는 ORB라는미들웨어이다.

– 하나의컴포넌트가다른컴포넌트를호훌하면, 클라이언트는 IDL
스텁이나동적호츨인터페이스를통해메소드호출을 ORB로보
낸다.

78

ORB
CORBA(계속…)

– 스텁은객체서비스에정적인인터페이스를제공한다.
• 클라이언트는 ORB에서일어나는서버객체와의통신방법이나
활성화방법, 저장밥법등은몰라도되며, ORB가다알아서해
준다.

– 활성화된객체는객체러퍼런스를통해구별되고클라이언트는
이객체레퍼런스를얻어메소드를호출하기위한핸들로사용한

다.

79

ORB
ORB 와 RPC

클라이언트

foofoo 호출호출

서버 클라이언트
서버

자료자료
객체의

foo
호출

객체의
foo
호출

코드코드
foofoo
자료자료

foofoo
자료자료

객체 객체

foo의실행

RPC기법 ORB

80

ORB
CORBA 2.0 ORB의구조

Object Request Broker (IIOP)Object Request Broker (IIOP)

Client IDL
Stubs

Client IDLClient IDL
StubsStubs

Static
Skeletons

StaticStatic
SkeletonsSkeletons

ClientClientClientClientClientClientClientClientClientClientClientClientClientClientClient
ClientClientClientClientClientClientClientClientClientClientClientClientObject Imp.Object Imp.Object Imp.

InterfaceInterface
RepositoryRepository

Dynamic
Invocation
DynamicDynamic

InvocationInvocation

Dynamic
Skeleton

Invocation

DynamicDynamic
SkeletonSkeleton

InvocationInvocationORB
Interface

ORBORB
InterfaceInterface

ObjectObject
AdaptersAdapters

ImplementationImplementation
RepositoryRepository

81

ORB
DCOM의구조

프록시
객체

클라이
언트

컴포넌트스텁

보안
제공자

DCE
RPC

프로토콜스택

보안
제공자

DCE
RPC

프로토콜스택

DCOM DCOM 네트웍네트웍
프로토콜프로토콜

OLE 32

SCM
SCM

CoCreateInstanceCoCreateInstance

((원격원격)) 활성화활성화

CoCreateInstanceCoCreateInstance

82

ORB
CORBA의전체구조

기본
프로
그래밍
구조

원격
구조

클라이언트

CORBA
라이
브러리

클라이언트
스텁(프록시)

ORS(s) (orbixd)와
구현 저장소

TCP TCP 소켓소켓

ORBORB ORBORB

객체객체

서버

객체스켈레톤

객체어댑터(CORBA lib)

와이어
프로토콜
구조

클라이언트클라이언트 컴퓨터컴퓨터 서버서버 컴퓨터컴퓨터

83

ORB

기본
프로
그래밍
구조

원격
구조

DCOM의전체구조

클라이언트

COM
라이
브러리

객체
프록시

인터
프록시

SCM(s)
레지스트리

SCM

레지스트리

SCM

레지스트리

RPC RPC 채널채널

OXIDOXID
리졸버리졸버

OXIDOXID
리졸버리졸버

OXIDOXID
리졸버리졸버

OXIDOXID
객체객체

Ping client Ping server

인터
스텁

객체
스텁

클래스
팩토리

객체객체

서버

와이어
프로토콜
구조

클라이언트클라이언트 컴퓨터컴퓨터 서버서버 컴퓨터컴퓨터

객체익스포트

84

ORB
상위계층

• 기본프로그래밍구조

– 프로그래머의관점
• 차이점

– 클라이언트의객체를요청과메소드호출방법
– 서버의객체생성과초기화방법

85

ORB
상위계층(계속…)

• DCOM
– 클라이언트는 COM라이브러리의 CoCreateInstance()를호출한다.
– COM의하부조직은객체서버를시작한다.
– 서버는지원되는모든 CLSID마다클래스팩토리를생성하고등록한다. 서버블럭은더
이상필요없다는신호가올때까지기다린다. 클라이언트로부터들어오는요청은다른
쓰레드가처리한다.

– COM은클래스팩토리포인터를얻어, CreateInstance()를호출한다.
– CreateInstance()에서서버는객체를생성하고, 인터페이스포인터를얻기위해

QueryInterface()를호출한다.
– COM은인터페이스포인터를클라이언트에게되돌려준다.

86

ORB
상위계층(계속…)

• CORBA
– 클라이언트는클라이언트스텁의정적함수 ::bind()를호출한다.
– ORB는지원하는객체를포함하는서버를시작힌다.
– 서버는지원되는모든객체를초기활성화시킨다. (각생성자에서객체레퍼런스를생
성하고등록될수있게호출된다.)

– 서버는 CORBA::BOA::implisready()를호출해 ORB에게클라이언트요청을받을수있
다는것을알린다.

– ORB는객체레퍼런스를클라이언트에게돌려준다.

87

ORB
중간계층

• 원격구조

– 클라이언트와서버가마치같은주소공간에위치한것처럼보이
게하는하부구조

• 차이점

– 서버객체등록방법
– 프록시/스텁/스켈레톤인스턴스생성시점

88

ORB
중간계층(계속…)

• DCOM
– CoCreateInstance()를호출을받으면 COM 라이브러리는 SCM(Service Control Manager)
으로넘긴다.

– SCM은클래스팩토리가등록되어있는지확인한다. 등록돼있지않으면 SCM은레지스
트리를뒤져서해당클래스의서버경로이름을찾아서버를활성화한다.

– 서버는클래스객체테이블에있는모든지원되는클래스팩토리를등록한다.
– SCM은테이블에서포인터를얻고, 그클래스의 CreateInstance()를호출한다.
– CreateInstance()가포인터를돌려주면, COM은새로생성되는객체인스턴스를위한스
텁을만든다.

89

ORB
중간계층(계속…)

• DCOM
– 객체스텁은인터페이스포인터를마샬링하고레지스트리를탐색해인터페이스스텁을

만들고, 서버객체의실제인터페이스와연결한다.
– SCM이마샬링된포인터를클라이언트쪽으로보내면, COM은그객체인스턴스를위한
객체프록시를만든다.

– 객체프록시는포인터를언마샬링하고레지스트리를살펴인터페이스포록시를만들고

스텁에연결돼있는 RPC채널객체에연결한다.
– COM 라이브러리는클라이언트로인터페이스포록시에대한포인터를돌려준다.

90

ORB
중간계층(계속…)

• CORBA
– ::bind()호출을받으면, 클라이언트스텁은 작업을 ORB에위임한다.
– ORB는구현저장소에서버경로이름을묻고, 서버를활성화한다.
– 서버는지원되는모든객체를초기에활성화한다. CORBA::Object의생성자는유일한
레퍼런스 ID로 BOS::create()를호출해객체레퍼런스를얻는다. 그다음 obj_is_ready()를
호출해객체레퍼런스를등록한다.

– 클래스의생성자는스켈레톤클래스의인스턴스를생성한다.
– ORB가객체레퍼런스를클라이언트쪽에보내면, ORB는프록시클래스의인터페이스
를생성하고해당객체레퍼런스와함께프록시객체테이블에등록한다.

– 클라이언트스텁은클라이언트에객체레퍼런스를돌려준다.

91

ORB
하위계층

• 와이어프로토콜구조

– 서버와클라이언트가서로다른컴퓨터에위치하고있을경우를
지원

• CORBA
– ORB간의통신은전적으로구현한업체에달려있다.

• GIOP (다른업체의 ORB 통신을위해)
• IIOP (TCP/IP연결지원)

92

ORB
하위계층(계속…)

• DOCM
– OXID객체

• IRemUnknowm인터메이스지원
– RemQueryInterface()
– RemAddRef()
– RemRelease()

• 같은객체익스포터로가는여러개의원격 Iunknown메소드
호출을묶어주어성능개선

– DCE RPC 명세에기준
• IRemUnknown친터페이스, Pinging 프로토콜추가

93

ORB
하위계층(계속…)

• 차이점

– 원격인터페이스포인터나객체레퍼런스가서버측의정보를클
라이언트에게전달하는 방법

– 다양한환경에서의전송을위해자료가마샬링된표준포맷

94

ORB
하위계층(계속…)

• DCOM
– 위임된 CoCreateInstance()요청을받았을때, 클라이언트측의 SCM이레지스트리를찾아
그리드객체가다른컴퓨터상의서버에있으면 IRemoteActivation RPC 인터페이스의
메소드를호출한다.

– 서버측의 SCM이서버를활성화시키면객체의익스포터와연결되고, OXID를받는다.
서버에접근하기위한 RPC 바인딩과 OXID 사이의맵핑은서버측의 OXID 리졸버를통
해등록된다.

– CreateInstance()가돌려주는포인터를객체스텁이마샬링할때, 포인터는서버에서유일
한인터페이스포인터지시자(IPID)가할당된다. 또포인터를나타내는객체레퍼런스
가생성된다. 객체레퍼런스에는 IPID, OXID, 프로토콜당하나의 OXID리졸버주소등의
내용이담겨있다.

95

ORB
하위계층(계속…)

• DCOM
– 서버측의 SCM이나클라이언트측의 SCM을통해마샬링된인터페이스포인터가돌아
오면, 객체프록시는객체레퍼런그에서 OXID와 OXID 리졸버주소를추출하고지역
OXID리졸버의 IOXIDResolve::ResolveOxid() 메소드를호출한다.

– 클라이언트측 OXID 리졸버는 OXID의캐싱된맵핑이있는지알아보고, 없다면서버측
OXID리졸버의 IOXIDresolve::ResolveOxid() 메소드를호출한다. 이메소드는등록된
RPC바인딩을되돌려준다.

– 클라이언트측리졸버는맵핑을캐시하고객체프록시에 RPC 바인딩을돌려준다. 이렇
게하면객체프록시는자신과새로생성된인터페이스프록시들을객체인터페이스에

연결된 RPC채널이연결한다.

96

ORB
하위계층(계속…)

• CORBA
– 위임된 ::bind() 요청이들어오면, 클라이언트측 ORB는지원하는서버기계를위치파일
에물어찾는다. 그다음 TCP/IP를통해서버측 ORB에요청을전달한다.

– 서버측의 ORB가서버를활성화시키면, 객체는서버에의해활성화되고,
COEBA::Object생성자가호출된다. 그다음 BOA::Create()안에서 BOA는단말소켓을
만들고, 객체는객체 ID를얻는다. 그리고인터페이스와구현이름, 레퍼런스 ID, 단말
주소를갖는객체레퍼런스도만들어진다. IIOP프로토콜을알고있는클라이언트를위
해서버는기계의이름, TCP/IP포트번호, object_key를포함하는상호작동가능한객체
레퍼런스를만든다. BOA는 ORB에객체레퍼런스를등록한다.

– 객체레퍼런스가클라이언트측으로돌아오면, 프록시는단말주소를찾아내서버에소
켓연결을한다.

97

ORB
결론

• DCOM/CORBA의구조는매우흡사하다
– 원격객체활성화와투명한접근을허용하는분산객체시스템의하부구조

• 주요차이점

– DCOM의다중인터페이스상속 (QueryInterface() 지원)
• 객체가원격에서다중인터페이스를동적으로로드할수있다.

– CORBA의모든인터페이스는 CORBA::object를상속받는다.
• 객체의등록, 레퍼런스생성, 스켈레톤초기활성화등모든객체에공통적인임무를
수행한다.

• DCOM에서는서버가담당하거나 DCOM 런타임시스템이동적으로수행
– 와이어프로토콜구조(RPC/ORB)

