RPC

Remote Procedure Call



Introduction of RPC

RPC

e Support the communication layer
— provide an easy-to-use form of IPC and a reliable technology
* high performance connectivity

e Main disadvantage
— lack the flexibility and functionality of MOM
* no-wait capability
* broadcasting
 gueuing and deferred synchronous processing
 asynchronous processing

e Advanced RPCs
— extend these functionality of

— offer the management services, greater network transparency, and
traslation services



What are RPCs (1)

RPC

- the structure of C function
RPC Tools ) call
- function name,
- Its arguments and return
structure

Code to
connect

Return the
results




What are RPCs (2)

RPC

RPC: Inter-process communication between application processes




Background of RPCs

RPC

First version
» Xerox’s Palo Alto Research Center in the late 1970s
* named ‘Courier’
In the early 1980s
» Sun Microsystemsadopted RPCs for its network
« created the XDR (eXternal Data Representation) RPC format
 used it to develop NFS
 developed ‘rpcgen’, a RPC compiler

 developed ONC rpcgen
* bundled with Unix System

» developed TI-RPC, bridged the Unix aand PC systems

 developed new RPC compiler, named IDL(Interface Definition Lang)



How do RPCs work?

RPC

» RPC: distributed processing
» how to pass data between difference processes
 data must actually be packaged and moved across the network

No RPC tool: packing & unpacking
the data by programmer

RPC tool: automatically packing &
unpacking the data during run-time

e No RPC tool

— the programmer has to ensure the application-specific data structures are
converted into a sending form

— the programmer has to program any translation between data formats
— the programmer has to code the network transport protocols



RPC run-time environment (1)

RPC

« RPC run-time modules in Calling Calling process/
Called process

— reduce the data structure to be passed

— convert the individual data elements to a format
understood by the called process

— make calls to the network interface to co-ordinate RPC
the sending of the packaged data to the called S

process
. Module
— support multiple network protocol

o Multi-network environments
— need to have a network gateway to transfer RPCs

RPC
Middleware

Netware SNA

RPC
Middleware




RPC libraries and stubs

= =

RPC

Generated Generated
Communication Communication
Code (Stub) Code (Stub)

Network
Software



Remote Procedure Call model

Client process

client
routines

A

A 4

client
Stub

A

Client process

server
routines

\ 4

server
Stub

A 4

network
routines

\ 4

A

ocal kernel

»
L

network
routines

Remote kernel

RPC



10

RPC run-time environment (2)

e RPC run-time modules in Called

receives the inbound request containing the packaged/converted data
unpacks the received buffer, re-creating the data structures

converts the individual data into the local format

calls the required process

coverts and packages the results for transmission to caller

» Error-handling service of RPC SW

terminate the session

close all files

clean up the tables

notify the application process

retry the application, if defined

Invisible each process, called and caller

are achieved using network and run-time libraries

RPC



11

RPC run-time environment (3)

The Library functions
— packing and unpacking data types
 converting HW-specific data before or after transmission
— handling network-communication errors and recovering
— co-ordinating the request/reply messages between caller and called
— management of server scheduling

The stub code
— packing and unpacking data structures
— allocating and freeing memory
— packing and unpacking data types
 an intermediate common protocol has been used
« ASN (Abstract Syntax Notation) Basic Encoding Rules

RPC



12

RPC development environment

RPC

A toolkit

— enables the developer to specify the interactions between the processes
— support a high-level scripting language

 generate a standard language such as C

The specification in a description file

the parameters to the remote calls and how they are used

user-defined data structures passed as parameters

names of the processes

mechanisms for assigning the network name used by each server process
communication options



13

Example of a Sun RPC program

RPC

Server procedures
test_srv
Server
test srv.c program

RPC specification file

test.h

test_cint.c Client

Client main function \ program




14

RPC Library Routines (1)

 RPC client
callrpc call remote procedure, given [prognum, versnum, procnum]

cint_broacast()
cintraw_create()
cinttcp_create()
cintudp_create()
rpc_createerr

cint_pcreateerror()
failed

cint_call
cint_geterr()
cint_perrno()

cint_freeres()
results

cint_destroy()

RPC

broadcast remote procedure call everywhere

create toy RPC client for simulation

create RPC client using TCP transport

create RPC client using UDP transport

global variable indicating reason why client creation failed
print message to stderr about why client handle creation

call remote procedure associated with client handle

copy error information from client handle to error structure
print message to stderr corresponing to condition given
free data allocated by RPC/XDR system when decoding

destroy client’s RPC handle



15

RPC Library Routines (2)

e RPC Server

regiserrpc()
src_run()
svcraw_create()
svctcp_create()
svcudp_create()
svc_fds

svc_register()
procedure

svc_getreq()
svc_getargs()
svc_getcaller()
svc_sendreply()

svc_freeards()
arguemnts

RPC

register procedure with RPC service pakage

wait for RPC requests to arrive and call appropriate service
creates a toy RPC service transport for testing

creates an RPC service based on TCP transport

creates an RPC service based on UDP transport

global variable with RPC service file descriptor mask
associates prognum and versnum with service dispatch

returns when all associated sockets have been serviced
decodes the arguments of an RPC request

get the network address of the caller of a procedure
send back results of a remote procedure call

free data allocated by RPC/XDR system when decoding



16

RPC Library Routines (3)

 RPC Server (cont.)

svcerr_auth()
svcerr_decode()

svcerr_noproc()
procedure

svcerr_noprog()
svcerr_progvers()
svcerr_systemerr()

svcerr_weakauth()
authentication

ssvc_unregister()
svc_destroy()

RPC

called when refusing service because of authentication error
called when service cannot decode its parameters
called when service hasn’t implemented the desired

called when program is not registered with RPC package
called when version is not registered with RPC package
called when service detects system error

called when refusing service because of insufficient

remove mapping of [prognum, vernum] to dispathc routines
destroy RPC service transport handle



17

RPC Standards

The main standard for RPCs
— embedded within the Open Software Foundation’s DCE standard

— based for Windows RPC
— based for CORBA
— based for RMI

RPC



18

Converage of RPC products

Advanced RPC: no-wait capability, broadcating, deferred synchronous
Messaging MW: queueing

RPC




19

Simple VS Advanced RPC toolkits

Parameter passing

data types supported
specification support

large message handling
multiple transport protocol
memory management
broadcasting

no wait

server search capability
multi-threading
multi-tasking

multiple binds
compression

queuing, routing and prioritization

RPC



20

Advantages and Disadvantages of RPCs

Advantages

Simple in concept

Useful for converting legacy applications
Good performance

Error checking is easier

Well tried and tested

Advanced toolkits save effort

Disadvantages

One-to-one communication
Resilience

Complexity

Difficulty of change

RPC



21

When to use RPCs

RPC

Require high performance
Are tightly integrated as opposed to loosely coupled

Are to be built by people familiar with C and procedural
languages rather than OOPL

Are likely to be constrained by memory or are to be run on low-
end platforms

Are not complex in design and do not require multiple many-to-
many calls between processes

Do not require asynchronous communication

Do not require resilient services such as store-and-forward, but
can be written to use exception routines to handle network errors

Are unlikely to be subject to frequent changes of process
residence once implemented



22

Research Directions

RPC

e Management services
— (ueuing, security, guaranteed delivery,
— advanced synchronization services, advanced threads services,
— load balancing, rollback and recovery services,
— performance monitoring, monitoring and logging for debugging purposes
— advanced time handling services

* Network transparency
— directory services: increase network and platform independence
— establish the best routes for packets at run-time
— add the network client and server names of processes at run-time
— remove the need for this

» Translation capability
— support database access and translation of DB commands from a standard



