
1

RPC

Remote Procedure Call

2

RPCIntroduction of RPC
• Support the communication layer

– provide an easy-to-use form of IPC and a reliable technology
• high performance connectivity

• Main disadvantage
– lack the flexibility and functionality of MOM

• no-wait capability
• broadcasting
• queuing and deferred synchronous processing
• asynchronous processing

• Advanced RPCs
– extend these functionality of
– offer the management services, greater network transparency, and

traslation services

3

RPCWhat are RPCs (1)

A procedure call
on one machine

Entry point of a
procedure

on another machine

Code to
connect

Return the
results

RPC Tools

- the structure of C function
call

- function name,
- its arguments and return
structure

Supporting SW for RPC

4

RPCWhat are RPCs (2)

RPC: Inter-process communication between application processes

Process 1
eg,

Application
DBMS

mail
DTP,
etc

RPC
SW

Application call
mail call

DBMS call
Process 2

eg,
Application

DBMS
mail
DTP,
etc

RPC
SW

Network command

5

RPCBackground of RPCs

• First version
• Xerox’s Palo Alto Research Center in the late 1970s
• named ‘Courier’

• In the early 1980s
• Sun Microsystemsadopted RPCs for its network
• created the XDR (eXternal Data Representation) RPC format
• used it to develop NFS
• developed ‘rpcgen’, a RPC compiler

• ONC
• developed ONC rpcgen
• bundled with Unix System

• SUN
• developed TI-RPC, bridged the Unix aand PC systems

• DCE
• developed new RPC compiler, named IDL(Interface Definition Lang)

6

RPCHow do RPCs work?

• RPC: distributed processing
• how to pass data between difference processes
• data must actually be packaged and moved across the network

A process
in site i

A process
in site j

No RPC tool: packing & unpacking
the data by programmer

RPC tool: automatically packing &
unpacking the data during run-time

• No RPC tool
– the programmer has to ensure the application-specific data structures are

converted into a sending form
– the programmer has to program any translation between data formats
– the programmer has to code the network transport protocols

7

RPCRPC run-time environment (1)

Calling process/
Called process

RPC
Run-time
Module

• RPC run-time modules in Calling
– reduce the data structure to be passed
– convert the individual data elements to a format

understood by the called process
– make calls to the network interface to co-ordinate

the sending of the packaged data to the called
process

– support multiple network protocol

• Multi-network environments
– need to have a network gateway to transfer RPCs

Process A RPC
Middleware

RPC
Middleware

Process B
Network
Gateway

Netware SNA

8

RPCRPC libraries and stubs

Application
program

Generated
Communication

Code (Stub)

Libraries

Application
program

Generated
Communication

Code (Stub)

Libraries
Network
Software

9

RPCRemote Procedure Call model

client
routines

client
Stub

network
routines

Client process

Local kernel

server
routines

server
Stub

network
routines

Client process

Remote kernel

10

RPCRPC run-time environment (2)

• RPC run-time modules in Called
– receives the inbound request containing the packaged/converted data
– unpacks the received buffer, re-creating the data structures
– converts the individual data into the local format
– calls the required process
– coverts and packages the results for transmission to caller

• Error-handling service of RPC SW
– terminate the session
– close all files
– clean up the tables
– notify the application process
– retry the application, if defined
– invisible each process, called and caller
– are achieved using network and run-time libraries

11

RPCRPC run-time environment (3)

• The Library functions
– packing and unpacking data types

• converting HW-specific data before or after transmission
– handling network-communication errors and recovering
– co-ordinating the request/reply messages between caller and called
– management of server scheduling

• The stub code
– packing and unpacking data structures
– allocating and freeing memory
– packing and unpacking data types

• an intermediate common protocol has been used
• ASN (Abstract Syntax Notation) Basic Encoding Rules

12

RPCRPC development environment

• A toolkit
– enables the developer to specify the interactions between the processes
– support a high-level scripting language

• generate a standard language such as C

• The specification in a description file
– the parameters to the remote calls and how they are used
– user-defined data structures passed as parameters
– names of the processes
– mechanisms for assigning the network name used by each server process
– communication options

13

RPCExample of a Sun RPC program

test_proc.c

test.x

main_test.c

Server procedures

RPC specification file

Client main function

rpcgen

test_srv.c

test.h

test_clnt.c

cc

cc

RPC
run-time
library

test_srv

test

Server
program

Client
program

14

RPCRPC Library Routines (1)

• RPC client
– callrpc call remote procedure, given [prognum, versnum, procnum]
– clnt_broacast() broadcast remote procedure call everywhere
– clntraw_create() create toy RPC client for simulation
– clnttcp_create() create RPC client using TCP transport
– clntudp_create() create RPC client using UDP transport
– rpc_createerr global variable indicating reason why client creation failed
– clnt_pcreateerror() print message to stderr about why client handle creation

failed
– clnt_call call remote procedure associated with client handle
– clnt_geterr() copy error information from client handle to error structure
– clnt_perrno() print message to stderr corresponing to condition given
– clnt_freeres() free data allocated by RPC/XDR system when decoding

results
– clnt_destroy() destroy client’s RPC handle

15

RPCRPC Library Routines (2)

• RPC Server
– regiserrpc() register procedure with RPC service pakage
– src_run() wait for RPC requests to arrive and call appropriate service
– svcraw_create() creates a toy RPC service transport for testing
– svctcp_create() creates an RPC service based on TCP transport
– svcudp_create() creates an RPC service based on UDP transport
– svc_fds global variable with RPC service file descriptor mask
– svc_register() associates prognum and versnum with service dispatch

procedure
– svc_getreq() returns when all associated sockets have been serviced
– svc_getargs() decodes the arguments of an RPC request
– svc_getcaller() get the network address of the caller of a procedure
– svc_sendreply() send back results of a remote procedure call
– svc_freeards() free data allocated by RPC/XDR system when decoding

arguemnts

16

RPCRPC Library Routines (3)

• RPC Server (cont.)
– svcerr_auth() called when refusing service because of authentication error
– svcerr_decode() called when service cannot decode its parameters
– svcerr_noproc() called when service hasn’t implemented the desired

procedure
– svcerr_noprog() called when program is not registered with RPC package
– svcerr_progvers() called when version is not registered with RPC package
– svcerr_systemerr() called when service detects system error
– svcerr_weakauth() called when refusing service because of insufficient

authentication
– ssvc_unregister() remove mapping of [prognum, vernum] to dispathc routines
– svc_destroy() destroy RPC service transport handle

17

RPCRPC Standards

• The main standard for RPCs
– embedded within the Open Software Foundation’s DCE standard

– based for Windows RPC
– based for CORBA
– based for RMI

18

RPCConverage of RPC products

Transport layer

Management layer

Communication
layer

Simple
RPCs

Advan
RPC

toolkits

Messag-
ing

MW

Distri-
buted
OLTPDCEORB

• Advanced RPC: no-wait capability, broadcating, deferred synchronous
• Messaging MW: queueing

19

RPCSimple VS Advanced RPC toolkits

• Parameter passing
• data types supported
• specification support
• large message handling
• multiple transport protocol
• memory management
• broadcasting
• no wait
• server search capability
• multi-threading
• multi-tasking
• multiple binds
• compression
• queuing, routing and prioritization

20

RPCAdvantages and Disadvantages of RPCs

• Advantages
– Simple in concept
– Useful for converting legacy applications
– Good performance
– Error checking is easier
– Well tried and tested
– Advanced toolkits save effort

• Disadvantages
– One-to-one communication
– Resilience
– Complexity
– Difficulty of change

21

RPCWhen to use RPCs

• Require high performance
• Are tightly integrated as opposed to loosely coupled
• Are to be built by people familiar with C and procedural

languages rather than OOPL
• Are likely to be constrained by memory or are to be run on low-

end platforms
• Are not complex in design and do not require multiple many-to-

many calls between processes
• Do not require asynchronous communication
• Do not require resilient services such as store-and-forward, but

can be written to use exception routines to handle network errors
• Are unlikely to be subject to frequent changes of process

residence once implemented

22

RPCResearch Directions

• Management services
– queuing, security, guaranteed delivery,
– advanced synchronization services, advanced threads services,
– load balancing, rollback and recovery services,
– performance monitoring, monitoring and logging for debugging purposes
– advanced time handling services

• Network transparency
– directory services: increase network and platform independence
– establish the best routes for packets at run-time
– add the network client and server names of processes at run-time
– remove the need for this

• Translation capability
– support database access and translation of DB commands from a standard

