
1

DBC

Database Connectivity

2

DBC
Considering Factors in DBC

• DBC Concept can extend to Current Situation as follows;
– Data vs Contents

• Translation of contents or data

– API vs Service funtionality
• Service request for server like DML or service funtionality

– DBMS vs Service SW
• Service processing engine like Query processing engine in DBMS

– Database vs Meta-Database
• How can handle the Meta-data for next generation
• How can manage the media database for multimedia contents service

– Query processing for semantic oriented query
– Its based on ontology concept

3

DBCIntroduction of DBC
• Provide services that are covered by the translation layer

– DB gateway: provide communication services

• A trade of middleware
– extremely useful tools
– enables easier access to data in heterogeneous sources
– in future, combining with MOM or DCE to extend the functionality

and retain market share

• Three key areas
– the feasibility of comprehensive translation across diverse DBMSs
– the performance problems associated with dynamic SQL
– whether alternative approaches may offer greater flexibility and

higher performance

4

DBCDefinition of DBC

• Definition
– an insulating layer between the application and the DBMS
– uses one standard language to access all the DBMSs

• translate the standard langauge to the various languages used by the
target DBMSs

• Common application programming interface
– the API of one of the DBMSs

• adv: API is likely to be workable and pratical
• dis: API depends on the DBMS vendor

– a standard
• adv: vendor-netutral
• dis: API may not be updated with DBMS developement

– a proprietary, purpose-built API developed by the middleware vendor
• adv: the vendor can devise a language to handle all types DBMS
• dis: depends on th middleware vendor’s product

5

DBCWhy is DBC SW needed

• Problems with Proprietary Interfaces
– see Next two slides
– Same problems are occurred in mobile environments

• Heterogeneous DB Access Approaches
– see Next three slides

6

DBCProblems with Proprietary Interfaces (1)

Server x Server y

Client i Client j

?
Server Interface
Client Interface

7

DBCProblems with Proprietary Interfaces (2)

Server 1 Server 2 Server n

Client i Server Interface
Client InterfaceClient j Client k

Connection Types = Client Types * Server Types
⇒ Leads to an impossible development/maintenance

8

DBCHeterogeneous DB Access Approaches (1)

1. Common Interface Architecture

Clients

Server 1 Server 2 Server n

ClientsClients Server Interface
Client DB Drivers
Common Client API

9

DBCHeterogeneous DB Access Approaches (2)

2. Common Gateway Architecture

Clients

Server 1 Server 2 Server n

ClientsClients

Common
Gateway

Server Interface
Common Client API

10

DBCHeterogeneous DB Access Approaches (3)

3. Common Protocol Architecture

Clients

Server 1 Server 2 Server n

ClientsClients
Server Interface
Common Protocol
Common Client API

11

DBCMobile Mobile 환경의환경의다양한다양한플랫폼의플랫폼의문제점문제점

• 산업의발전을가로막는장애요인

• 표준화필요성대두

SK Telecom

GVM SK-VM

KTF

MAP BREW

LG Telecom

CLDC/MIDP

Content
Provider

Content
Provider

Content
Provider

Handset
Vendor

Handset
Vendor

Handset
Vendor

응용응용 프로그램프로그램 실행실행 환경들이환경들이 혼재된혼재된 복잡한복잡한 서비스서비스 형태형태

12

DBCWIPI WIPI 의의주요주요기능기능 ((선택선택))

• 동적 API 및 Component 관리기능
– 다운로드를통해동적으로 API 및 Component(DLL)를추가/갱신할
수있는기능

– 다운로드되면바로플랫폼에서 DLL를활성화시킴으로써즉시적
용되며, DLL 삭제시원상태로회복되는기능

SK Telecom / SK IMT KTF / KTiCOM LG Telecom

WIPI Implementation1 , WIPI Implementation2 , WIPI Implementationn

Content
Provider

Content
Provider

Content
Provider

Handset
Vendor

Handset
Vendor

Handset
Vendor

WIPIWIPI를를 적용한적용한 환경에서의환경에서의 서비스서비스 형태형태

13

DBCHow does DBC middleware help?

• DBC MW
– an insulating layer between the application and the DBMS
– provides one standard API to access all DBMSs
– the programmers only have to learn one DML

• Benefits of DBC (One API)
– development times are reduced

» complexity and learning time are reduced
– quality is improved

» less to make mistakes by one interface
– costs can be reduced

» errors and learning time are reduced
– systems are more adaptable

» the applications will require little change

14

DBCDB gateways and drivers

• DB Gateway and drivers
– see Next slides

• moving problems
• query drivers

15

DBCData Movement Problem

• Data is stored in multiple locations.
• Client/server means data is generated everywhere
• Demand for anywhere, anytime data
• Limited window for data movement

Operational
Systems

Departmental
Data

Departmental
Data

Central
Warehouse

Personal
Usage

Local
warehouse

Workgroup
Data

16

DBCDatabase Gateway Functions

• A DBMS gateway
– identifies and translates DBMS differences

• because of each DBMS has a proprietary technique to house data

Open
API

Classifier

Clustering

Associations

Sequential
Patterns

Open API

DB2
Adapter

DB2

MVS
Adapter

MVS

DBMS
Adapter

Other
DBMSMining Kernel

17

DBCBackground to development of DBC

• Late 1980s
– DBC appeared

• At 1990s
– prompted for client/server computing

• the number of types DBMS
• proprietary languages
• accessing to heterogeneous data

• Different types of DBMS
– hierarchical model
– network model
– relational model
– object-oriented model
– extended relational model

18

DBCThe challenge of DBC (1)

• Two part to the process of translation
– the translation of the names

• usually handled via a directory or dictionary that contains the names

– the translation of the DML
• may seem a simple, but the complexities involved

– the differences between the underlying models of DBMS
– various approached to implement the fundamental run-time

services
– the difference in dialect between the supposed standards, SQL

• Translation middleware
– cannot do all of these things
– can never provide a truly transparent interface to all the data in all the

DBMSs

19

DBCThe challenge of DBC (2)

• Translation between different DBMS models
– based on different concepts
– use a different DML and DDL

• translating queries
• translating updates

• Translation between the flavors of SQL and other standards
– different methods of structuring commands
– variations in syntax and semantics
– data types
– status codes and messages
– collating sequences
– stored procedures
– explicit and implicit commit and rollback
– nested transactions

20

DBCThe challenge of DBC (3)

• Translation between the ways of achieving the same services
– a set of development services

• to create schemata, allocate physical storage, allocate views and
develop their application

– a set of run-time services
• ensure the data lose or corruption, the integrity, etc

– integrity checks
– locking and locking level
– locking duration
– deadlock detection
– data dictionary services and system catalog
– security services
– global optimization
– access across heterogeneous DBMSs

21

DBCStandards (1)

• Standard can mean a de jure or a de factor

– Microsoft’s ODBC (Open Database Connectivity)

– IBM’s DRDA (Distributed Relational Database Architecture)

– ISO/ANSI’s RDA (Remote Data Access) standard

– SQL Access Group’s RDA

– Borland’s IDAPI (Integrated Database API) Architecture

– Apple’s DAL (Data Access Language) standard

22

DBCStandards (2)

• Microsoft’s ODBC (Open Database Connectivity)
– see next 5 slides (22-26)

• IBM’s DRDA (Distributed Relational Database Architecture)
– specifically designed to link together IBM DB platforms

• 4 different relational DBMSs
– SQL/DS (DB2/VM, DB2/VSE), DB2, DB2/400 and DBM

• one hierarchical IMS DBMS

23

DBCODBC (1)

• What is ODBC (Open DataBase Connectivity)
– a common interface approach to database connectivity

implemented as a Call Level Interface
• API for connecting to databases

– compatible with other database connectivity approaches
• broad industry support
• eg) data access API in a version of Microsoft Windows

– complements embedded SQL API
• based on SQL access group (SAG) Common Language

Inteface

– initiating de jure standards process via ANSI

24

DBCODBC (2)

• Benefits of a Standard API
– Universal database access
– eases development burden
– broadens application support for databases
– Simplifies API confusion
– Built-in scalability for applications

• Three tier Driver Model
– One tier drivers

• intelligent
• typically for file access (dBase, Paradox)
• “Engine in a driver”

– Two and three tier drivers
• modular
• typically for DB servers, intelligent backends, gateways
• “Passthru” logis

25

DBCOne-Tier ODBC Drivers

Application

ODBC DLL

xBase
Driver

xBase
File

26

DBC3-Tier ODBC Drivers

Application

ODBC DLL

xBase
Driver

xBase
File

SQL
Server
Driver

ODS
Gateway
Driver

SQL Server Gateway

DB/2

ORACLE

SyBase

27

DBCMiddleware: ODBC

• ODBC API
– Calls generated by application writer
– Driver writer may provide API functions

• Driver is dependent on server DBMS
– SQL server driver
– Oracle driver
– ODBC-compiler DBMS

Client application segment

Application code
ODBC API
ODBC stub

ODBC driver
(DLL)

Server DBMS

28

DBCStandards (3)

• ISO/ANSI’s RDA (Remote Data Access) standard

– initiated as an ISO/IEC standards effort of the WG3 in 1985
– became an ISO draft international standard in 1991
– is a full standard in now

⇒ a multi-purpose standard

– consists of two parts
• the generic RDA (ISO/IEC DIS 9579-1)
• the SQL specification (ISO/IEC DIS 9579-2)
⇒ not only supports application to DBC, but also supports DB-to-DB

connectivity

29

DBCStandards (4)

• SQL Access Group’s RDA
– SQL Access Group: founded in 1989

• Digital, HP, Informix, Ingres, Oracle, Sun , Tandem, Teradata, and
Unify

– define and prototype DB interoperability and portability specifications
• ISO’s RDA and ANSI’s SQL/SQL2
• X/Open in 1994

• Borland’s IDAPI (Integrated Database API) Architecture
– developed by Borland, IBM, Novell and wordPerfect
– based on SQL Access Group’s CLI
– see Next Slide

• Apple’s DAL (Data Access Language) standard
– an early pioneer of DBC and its Data Access Language
– based on SQL Access Group’s CLI

30

DBCMiddle-ware: IDAPI
• IDAPI: Integrated Database Application Programming Interface

– Developed by Borland in 1992
• based on SQL Access Group’s CLI

– A direct competitor to ODBC

Client application segment

Application code
IDAPI Object layer

IDAPI requester

Server IDAPI responder
IDAPI Object layer
IDAPI SQL driver

Oracle driver DB2 driver ODBC driver Etc driver

31

DBCMiddleware

32

DBCFlow of Data accessing Architecture

Applications Mutiple DBMSs

Application Links DBMS Links

Server CoreClient Core

Network LinksNetwork Links

33

DBCTypes of product (1)

• Three types
– database drivers
– database gateway
– distributed database environments

• Database drivers
– translate from the API used by the user to the API of the target DBMS

• don’t consider the communication over network
– must be provided by other middleware or by the programmer

– provide co-operating drivers
• a developer can access multiple DBMSs simultaneously and therefore

multi-DBMS joins
– adv: a cheaper and more simple architecture
– dis-adv.: don’t provide complete connectivity

– need addtitional middleware

34

DBCTypes of product (2)
• Database gateway

– be responsible for both translation and communication
• adv: communication function
• dis-adv.: do not cover all protocols of the underlying networks

– resides on both the client and the server
– three types of gateway

• point-to-point gateways
– are like a driver with its communication layer added
– enable the developer to access one DBMS using standard DML

» example: accessed using ODBC
• SQL gateways

– enable to access to multiple R-DBMS via a single API
» this API may be standard or proprietary and provide for

heterogeneous joins
• universal gateways

– provide access to all types of DBMS via a single API

35

DBCTypes of product (3)

• Distributed DB environments
– based on ORBs, DCE, MOM, or other communication layer product
– support translation and transport to and form the DBMSs
– support management services such as guaranteed delivery, time services

and security services

– two pioneers in using ORB-type technology
• Micrsoft: OLE custom object (OLX)

– provide an OLE wrapping around DB drivers and support
connection to data sources that ODBC does not support

• Oracle: Object
– is a similar product being planned by Oracle
– provide an ORB-type management layer around its gateways and

driver products

36

DBCAdv. And Disadv. With DBC (1)
• Advantages

– improve the quality of applications
– save effort and money

• Considering some issues
– Transparent translation
– Performance
– Solving the wrong problem
– Other solutions to give to transparency

• Is transparent translation feasible?
– DB translation

• the complexity of translation between DBMSs with different
philosophical roots

– non-procedural or navigational
• the difficulties of dealing with stored procedures
• the complexity of dealing with new sorts of data
• locking and deadlock protection

37

DBCAdv. And Disadv. With DBC (2)

• Performance is an issue
– Dynamic: translation at run-time may slow processing

• automatically handles as long as the correct version
– Static: translation at compiling time may fast and efficient

• any changes may not be reflected in all the applications
– performance degradation

• in dynamic case, large DBs is not trivial
• in static case, limited to only certain environment

• Are we solving the worng problem?
– The developer will still need to spend the time trying to find the data
– Middleware will only save fractions of tuime

38

DBCAdv. And Disadv. With DBC (3)
• Other solutions

– can be based on RPC/DCE or MOM
• calls the sub-routines and receives the requested data in reply
• ignore the use of tools ; GUI builders and 4GLs

– advantages
• performance can be tuned
• database change does not affect the application
• change to code need only be made once
• the code can be located near the data it accesses, reducing network traffic
• the programmer does not need to know where the data is
• the access will benefit from functions of RPC and MOM

– management servicesL guaranteed delivery, security, etc
– disadvantages

• specialisy knowledge of the DML is still needed
• the specialists can become a bottleneck unleess their time for mananing

39

DBCWhen to use (1)

• Should be used when:
– you have data spread across many DBs and DBMSs to need to access

using a single API
– the accesses you require do not have critical response times
– the accesses required do not require complex joins accessing many

DBMS and fast response times
– the DBs contain normal structured information in field; do not contain

images or other BLOBs
– the information is reasonably well structured with minimal duplication,

clear naming of fields, easy-to-understand records or tables
– you have the staff to test the middleware to make sure it works

effectively
– you recognize that total data transparency is not possible

40

DBCWhen to use (2)

• Should not use DBC for:

– heavy-duty updates using transactions and requiring the use of locking

– very large databases

– applications that require large cross-database joins

– applications that make extensive use of stored procedures

– applications requiring fast response times

⇒ may use RPC or MOM based middleware to support these cases

41

DBCProduct Examples

• Common Interface
– Apple : Data Access Language
– Borland: SQL-Link
– IBM: EDA/SQL
– Lotus: DataLens
– Oracle: SQLnet

• Common Gateway
– Microsoft: Open Database Server
– MDI: Database Gateway

• Common Protocol
– IBM: Distributed Relational DB Arch
– ISO/ANSI: Remote Database Access

